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LIFT FORCE OF AN AIRFOIL

IN THE FORM OF AN ARC WITH A SINK

UDC 532.5N. B. Il’inskii and N. D. Yakimov

The problem of maximizing the lift force of an airfoil in the form of an arc with a sink modeling flow
removal is studied within the framework of the classical model of a steady ideal incompressible liquid
flow. For a sink with a fixed flow rate, an optimal position on the upper surface of the arc is found,
which ensures the greatest increase in the lift force. It is shown that, in the presence of a sink, the
optimal shape of the arc with a limited curvature and chord length coincides with the optimal shape
of the arc without a sink, which was designed by M. A. Lavrent’ev (an arc of a circle). The flow rate
corresponding to the maximum lift force is determined, and the mechanism of the influence of flow
removal on the lift force is examined.

Introduction. In studying complex problems of aerohydrodynamics, at the initial stage, it is reasonable to
choose the simplest mathematical model of the flow and a simple shape of the airfoil. This was what Lavrent’ev did
[1, 2] solving the extreme problem of the airfoil theory, where an airfoil in the form of an arc was considered within
the framework of the ideal incompressible liquid model. In studying the effect of boundary-layer suction from the
airfoil surface on the lift and drag forces, Golubev was one of the first researchers to replace a slot by a point sink
[3, 4]. The paper of Nekrasov [5] on the flow around an airfoil with a sink and a source should be also noted. An
extreme problem with a slot on the airfoil replaced by a sink was considered by Abzalilov and Il’inskii [6].

In the present work, we study the problem of maximizing the lift force of an airfoil in the form of an arc
with a sink modeling the external-flow removal. We mean flow removal with a noticeable flow rate, which directly
participates in the formation of the ambient flow, rather than boundary-layer suction, which affects the flow pattern
only by changing separation conditions. The study is performed within the framework of the classical model of a
steady ideal incompressible liquid flow.

Flow Pattern and Governing Equations. We consider a plane steady potential flow of an ideal incom-
pressible liquid around an arc AB, such that the ends of the arc A and B are points of flow branching and removal,
respectively, i.e., the flow is attached. On the upper surface of the arc, at the point M, there is a point sink with
a flow rate 2πq, and there is a critical point N between the points M and B (Fig. 1a). It is necessary to determine
the most beneficial position of the sink (point M) at the arc of a given shape from the viewpoint of increasing lift
force, to clarify the character of the influence of sink power on the lift force, and also to find the shape of an arc
with a sink, which possesses the maximum lift force in the case of a limited chord length and curvature.

Let z be a complex variable of the flow plane. We assume that the flow velocity at infinity V∞ is known and
directed horizontally. The angle of attack of the arc (slope) is not defined beforehand and should provide the flow
in accordance with the above scheme.

The flow region shown in Fig. 1a may be conformally mapped as a unit circle in the plane of an auxiliary
variable ζ. After mapping, the flow around the arc is transformed into the corresponding flow around a circle
(Fig. 1b). Circulation of velocity around the airfoil remains the same, and the flow velocity at infinity in the plane ζ
[z = f(ζ) is a function of inverse mapping] is assumed to be equal to U∞ = V∞h, where h = |f ′(∞)|. The velocity
direction at infinity is determined by the relation µ = − arg f ′(∞) = − argU∞.
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Fig. 1

In accordance with the Joukowski theorem, the lift force of an arbitrary airfoil, including that with a sink,
is determined by the formula

Y = 2πρV∞Γ, (1)

where Γ is the circulation of velocity divided by 2π.
The complex potential of the flow around a circle with a sink (Fig. 1b) has the following form (see, for

instance, [7, p. 123]):

w(ζ) = U∞

(
ζ eiµ +

1
ζ eiµ

)
+ iΓ ln ζ − q ln

(ζ − 1)2

ζ
+ c

(c is a constant). Then, the circumferential velocity is found by the formula

u(γ) = −2U∞ sin (γ + µ)− Γ− q cot (γ/2), (2)

where γ is the argument (polar angle) of points on the circle; the positive direction is the direction of the velocity
u that coincides with the increase in γ. The branching point A and the point of flow removal B are found from the
relations

u(γA) = 0, u(γB) = 0. (3)

We denote β = γB − γA. With flow parameters changing in the plane z, the values of h and β remain
unchanged, since they are determined by the flow region geometry. Hence, to clarify the effect of the location and
power of the sink on the lift force of a given arc, one has to determine the dependence of Γ on the corresponding
parameters of the flow around a circle with a fixed value of β = βa known from the mapping f(z). In finding the
optimal shape, the dependence of βA and h on the arc shape should be taken into account. With regard for Eqs. (2)
and (3), the parameters Γ, q, and µ are related by

γB − γA = β. (4)

However, it is not possible to obtain an explicit relation for the lift force in terms of the initial parameters in order
to use then standard methods for studying explicit functions. Therefore, qualitative methods are used below.

The following geometric notation is used here. In the coordinates γ and u, we introduce sinusoid S and
cotangent curve G described by the equations uS(γ) = −2U0 sin (γ + µ)− Γ and uG(γ) = q cot (γ/2), respectively
(Fig. 2). Note that S = S(µ,Γ) depends on the parameters µ and Γ [and also on h for a changing arc: S = S(µ,Γ, h)],
and G = G(q) depends only on q. The quantity u(γ) = uS(γ)− uG(γ) is the distance from G to S. In particular,
the points A, B, and N correspond to the points of intersection of S and G. The lower surface of the arc corresponds
to the section γA < γ < γB, where S is located above G. In this notation, the change in µ may be represented as a
horizontal shift of the curve S, the change in Γ as a vertical shift, and the change in q as a vertical compression–
extension of G.
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Fig. 2

Possibility of Increasing Lift Force. We show that the appearance of a sink on the arc may increase the
lift force. According to Eq. (1), we have to show that the value of Γ in the presence of a sink may be greater than
without it.

The absence of the sink (q = 0) means that G coincides with the horizontal coordinate axis within the
interval 0 < γ < 2π. We choose µ (i.e., the point of the intended sink) so that the following inequality is valid for
q = 0:

γB0 − π > k(π − γA0) (k > 1). (5)

According to Eq. (4), we have γB0 − γA0 = βA. Hereinafter, the subscript “zero” corresponds to the case q = 0. It
is allowed in (5) that π − γA0 < 0. The corresponding value of Γ is denoted as Γ0, and S0 = S(µ,Γ0).

There is a value of q such that βq = γBq − γAq > βA, where γBq and γAq are the points of intersection of S0

and G(q) [here we do not require condition (4) to be satisfied]. Indeed, by the property of cotangent kq cot (γAq/2) <
|q cot (γBq/2)|, and if q is not too large, we obtain γAq − γA0 < γBq − γB0, since the angles of inclination of the
tangent line to S0 at the points A0 and B0 are identical in the absolute value. Therefore, we can construct a curve
S1 = S(µ,Γ1) that satisfies condition (4): γB1 − γA1 = βA [γB1 and γA1 are the points of intersection of S1 and
G(q)] for Γ1 > Γ0 (i.e., S1 lies below S0 for an identical µ). Thus, by introducing a sink, we can increase Γ and,
hence, Y .

Optimal Position of the Sink. We vary the position of the sink of a fixed power. The initial solution
for G and S1 corresponds to the scheme shown in Fig. 2 for some values of µ1 and Γ1 [S1 = S(µ1,Γ1)]. Without
changing Γ = Γ1 (and without fixing β), we reduce the value of µ by ∆µm = µ1−µ2 > 0, i.e., we shift S to the right
from S1 to Sm (we use the subscript m for this solution). Because of the opposite inclination of the tangent line to S
at the points A and B and owing to the monotonic character of the cotangent curve G, we obtain γBm−γB1 > ∆µm
and γAm−γA1 < ∆µm. (If β is small and the inclination of S at the point A is negative, then we have γAm < γA1.)
Hence, we obtain βm = γBm − γAm > γB1 − γA1 = βA. To obtain a given β = βA, we have to increase Γ from Γ1

to a certain value Γ2 (decreasing S from S1 to S2) for the same value of µ = µ2.
If the initial solution satisfies a condition similar to Eq. (5), the angle of attack decreases. With decreasing µ,

the circulation Γ increases. This is possible until there is a sector with u < 0 at the interval γB < γ < 2π. Hence, for
given q and βA, the maximum of Γ for this scheme is reached when the curves S and G touch each other at γ = γB.

Thus, to increase Γ, the sink of given intensity should be located on the upper surface as close to the trailing
edge as possible, so that the “reverse stream” to the sink began from the trailing edge, when the points B and
N coincide. It follows from the above reasoning that, as the critical point N approaches the trailing edge B, the
circulation Γ rapidly increases. In this extreme position, the flow structure near the circle is shown in Fig. 3a, and
the flow pattern near the sharp trailing edge of the airfoil is depicted in Fig. 3b.

We can assume that the introduction of a sink increases flow curvature above the airfoil, as in the case of
increasing circulation without a sink. Owing to the increase in the absolute value of the angle of attack (the angle
of attack is negative), the flow near the front part of the airfoil is curved upward (stronger than without the sink),
and the flow near the trailing edge is additionally curved downward due to the sink. Despite the increase in Γ, the
conditions on sharp edges can be retained if there is a sink. Thus, the lift force increases.
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Fig. 3

It should be noted that the sink accelerates the flow on the major part of the upper surface, and the flow-
branching point on the trailing edge (Fig. 3b) acts as an interceptor for the lower surface, decreasing the flow
velocity and increasing the pressure. This conclusion on the most beneficial position of the sink as close to the
trailing edge as possible is in agreement with the conclusions of [2–5].

We obtain the asymptotic value of the increase in the lift force ∆Y with introduction of a sink for small q.
Taking into account Eq. (1), we estimate the increment ∆Γ = Γe(q) − Γ0, where Γe(q) is the value of Γ for the
“optimal” position of the sink q on the arc. For q = 0, the curve G degenerates into the abscissa axis, which is
crossed by the sinusoid S at the points A and B at a distance γB − γA = βA at identical angles∣∣∣duS

dγ

∣∣∣ = 2U∞ sin
βA

2
.

For G and S touching each other and q → 0, the angle γ tends to 2π and the ordinate of the touching point uG = uS
tends to zero. With accuracy to small higher orders, we have

uG =
2q

2π − γ
,

dUG
dγ

= − q

2 sin2(γ/2)
≈ − 2q

(2π − γ)2
;

at the touching point of G and S,

duS
dγ

=
duG
dγ
≈ −2U∞ sin

βA

2
.

From here, we obtain q/(2π − γB) = U∞ sin (βa/2) and uG(γB) ≈ 2
√
qU∞ sin (βa/2). For the intersection points A

and B of S and G to remain at the distance γB − γA = βA, for q 6= 0, the curve S should be located lower than for
q = 0, by the value ∆Γ ≈ uG(γB)/2. Hence, the asymptotic representation of ∆Γ for small q has the form

∆Γ ≈ √q
√
U∞ sin (βA/2), (6)

where U∞ = V∞h.
With accuracy to small higher orders, the coefficient at

√
q is independent of the small curvature of the arc,

i.e., the “classical” lift force is supplemented by a “sink” lift force independent of it. The “classical” lift force at
small q is also independent of q, which follows from the construction of S and G. Therefore, the contributions of
the arc curvature and the sink to the lift force may be considered as independent in a certain sense.

It can be easily found that an increase in the sink power q leads to an increase in the circulation Γ only up
to a certain value; then the circulation decreases. For each arc, there is an optimal value of q∗ and the sink position
µ∗, for which Γ reaches the maximum Γ∗.

Example of Calculation. As an example, we consider an airfoil in the form of a plate, which allows
obtaining the “purely sink” lift force. For the plate, we set β = π and h = L/4 (L is the plate length). Figure 4
shows the calculated dependences of the relative circulation Γ∗ = Γ/U∞ = 4Γ/(V∞L) and the dependences α∗ = α/π

and θ∗ = θM/π (α is the angle of attack of the plate and θM = γM − γB is the arc on the circle from the image
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Fig. 4

of the trailing edge to the point of the sink) on q∗ = q/U∞ = 4q/(V∞L). The curve Γ∗(q∗) corresponds to the
asymptotic curve (6) near the origin and has a maximum; reaching the maximum, this curve decreases to zero. In
this case, θ∗ is two times greater than |α∗|. Note that the distance l from the trailing edge to the sink on a plate
of length L is determined by the formula l/L = (1− cos θM )/2 = sin2(θM/2), i.e., it is small for moderate q.

We can expect that, for arcs with small curvature, the value of the additional lift force due to the sink is close
to that calculated for the plate, i.e., comparable with the “classical” lift force of the arc. Thus, for the characteristics
of the YaK-42 aircraft, assuming that the air intake to the motors is performed from the wing (sink of the scheme
considered), the increment of the lift force is commensurable with the value obtained using the conventional scheme.

Optimal Shape of the Arc. The optimal airfoil is sought in a closed set of upward convex arcs with
a limited chord length Lmax and curvature Kmax. In airfoil modeling, we confine ourselves to simple schemes,
assuming that the arcs are not too curved (Kmax < 2/Lmax) and the ends of the chord (segment of the greatest
length whose ends lie on the arc) coincide with the ends of the arc. The optimal airfoil is constructed in three
stages.

Stage 1. We show that the airfoil with the maximum lift force from the given set has the maximum allowable
chord length Lmax. In contrast to the case of the absence of the sink, where this is obvious, a proof is needed here.

Let there be some arc l1 with a chord length L1 < Lmax on which a lift force Y1 is reached for a certain value
of q. Increasing the arc l1 by L2/L1 times (L1 < L2 6 Lmax), we introduce another arc l2. This arc also belongs to
this set, because its curvature is smaller. Since the transformation of l1 into l2 is a transformation of similarity, we
have h2 = h1L2/L1 > h1 and β2 = β1 < π (the latter inequality follows from the convex form of the arcs).

We show that a value Y2 greater than Y1 may be obtained for the same value of q for the sink (with its place
chosen correctly) on the arc l2.

Let the flow around the arc l1 correspond to the curves G = G(q) and S1 = S1(µ1,Γ1, h1) (Fig. 5). We
introduce the curve Sf = S(µf ,Γ1, h2), choosing µf such that Sf crosses S1 and G for γ = γB1. There is a second
point of intersection of Sf and S1 for γfs = γB1− π due to the equality of the periods and the symmetry of Sf and
S1 (their horizontal axes Γ1 coincide). Taking into account that γA1 = γB1 − β and β < π, we obtain γfs < γA1.
At the sector γfs < γ < γB1, the curve Sf is located above S1; at the corresponding point of intersection of Sf and
G, we have γAf < γA1, from where γB1 − γAf > β2.

Hence, we can construct a curve S2 = S(µf ,Γ2, h2), increasing Γ (i.e., decreasing Sf ), so that the equality
γB2−γA2 = β2 is valid for the points of intersection of S2 and G. Since Γ2 > Γ1, then we have Y2 > Y1 in accordance
with Eq. (1). The statement is proved.

Stage 2. We show that h increases with increasing arc curvature. Let the arc l2 be obtained from the arc
l1 by increasing curvature at a certain section. Since the chord lengths of the arcs are fixed, and arc rotation and
transfer do not affect the value of h, we may assume that the ends of the arcs l1 and l2 coincide. Since the arcs are
convex, the sectors adjacent to the ends (with an unchanged curvature) should be turned “outside” in passing from
l1 to l2. The length of the varied sector should increase. For simplicity, the increase in curvature is understood as
a change such that the least curvature of l2 on a given sector is greater than the greatest curvature of l1 on it.

It is known (see, for example, [8]) that, if we consider some region that is the image of the closed Jordan
curve in the plane z, then we have d = |f ′(∞)|, where z = f(ζ) is a function conformally mapping the image of the
unit circle in the plane ζ onto this region; f(∞) =∞. Here d is the transfinite diameter of this region determined
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Fig. 5

by the relation

d = lim
n→∞

sup
zi,zj

n(n−1)
2

√√√√ n∏
i,j=1, i 6=j

|zi − zj |

 , (7)

where zi and zj are arbitrary points inside the region bounded by the curve (or on this curve).
The case considered in the present paper satisfies the above definition (h corresponds to d); therefore, Eq. (7)

is also valid.
We may find a correspondence between the points of the arcs l1 and l2, such that |z2i − z2j | > |z1i − z1j |.

Then, from Eq. (7), it follows that d2 > d1, i.e.,

h2 > h1 (8)

(apparently, a strict inequality h2 > h1 may be established, but this is not needed in the case considered).
The sequence of the proof was proposed by S. R. Nasyrov.
Stage 3. We show that Y increases with increasing arc curvature. It is known [1] that the following inequality

is valid for arcs obtained by “pressing out” one from another, by virtue of the Lindelöf principle [9]:

β2 < β1. (9)

This allows us to use the same proving as at Stage 1. From the strict inequality in (9) (instead of the equality
β2 = β1 at Stage 1), it follows that Y2 > Y1. The strict inequality in (8) need not be satisfied.

Thus, in the set considered, the arc with the maximum chord length and a constant maximum curvature
(i.e., the arc of a circle) has the greatest lift force for a given q and, hence, in the absence of restrictions on q.

This result coincides with that obtained by Lavrent’ev for an arc without a sink [1]. Note that Lavrent’ev
[1] considered a more complicated case of a set of arcs of limited length (rather than a limited chord length) and
limited curvature (without requirement of convexity).

Sink on the Lower Surface. The sink on the lower surface is characterized by a constant direction (from
A to B) and a limited velocity at the upper surface. Using the same approaches as in the case of a sink on the upper
surface, we can easily prove that the sink on the lower surface may also increase the circulation Γ if it is located
near the nose. In this case, the angle of attack α increases.

The action of the sink may be explained as follows. The rear part of the airfoil works mainly in the same
manner as without the sink. The mechanism of the formation of circulation, which ensures satisfaction of the
Kutta–Joukowski–Chaplygin condition, acts in this part of the airfoil. Therefore, a mere increase in the angle of
attack leads to an increase in the circulation Γ. However, the mere increase in the angle of attack would violate
the conditions of inflow on the leading edge, where the branching point would be shifted to the lower surface,
but suction corrects the inflow on the leading edge. The necessary upward curvature of the flow upstream of the
airfoil, flow acceleration on the upper surface, and a decrease in velocity (behind the sink) on the lower surface are
ensured. Nevertheless, an attempt of seeking the best position of the sink in this case does not lead to a solution
corresponding to the flow scheme around the airfoil.
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Finally, we note that many questions remain open in studying the flow around arcs with flow removal, in
particular, the study of other schemes of flow removal. For example, we can use a plate with a zero angle of attack
with two symmetrically located sinks in its front and rear parts. Such a scheme yields a lift force

√
2 times greater

than a single sink (with an identical total power of the sinks).
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